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Abstract

The concept of symmetric extendibility has recently drawn attention in the
context of tolerable error rates in quantum cryptography, where it can be used
to decide whether quantum states shared between two parties can be purified
by means of entanglement purification with one-way classical communication
only. Unfortunately, at present there exists no simple general criterion to decide
whether a state possesses a symmetric extension or not. In this paper, we derive
criteria for symmetric extendibility within subclasses of all two-qudit states.
Using these criteria, we can completely solve the problem for a two-parameter
family of two-qudit states, which includes the isotropic states as a subclass.

PACS numbers: 03.67.−a, 03.67.Dd, 03.67.Hk

1. Introduction

The concept of symmetric extendibility has recently been introduced into the field of quantum
cryptography as means to decide whether quantum states shared by two parties, Alice
and Bob, may be purified by entanglement purification protocols using one-way classical
communication only. Whereas there exist a criteria for the case of two-qubit states which
can be applied in quantum cryptography [1, 2], very little is known about higher-dimensional
states. The purpose of this work is to derive criteria for a subclass of all two-qudit states,
which may be applied in quantum cryptography using higher-dimensional quantum systems
(qudits) as carriers of information.

The outline of this paper is the following. In this section, we shall introduce the basic
concepts and notation, including some remarks on the use of symmetric extendibility in
quantum cryptography. We also state the Hurwitz–Sylvester criterion for positivity, on which
a large part of our discussion relies. In section 2, we introduce the class of U2-invariant
two-qudit states, which are of interest in quantum cryptography [3, 4]; for these states we
derive a criterion (theorem 1) in order to decide whether they are symmetrically extendible or
not. We restrict our focus to the class of Bell-diagonal U2-invariant states, which are of even
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greater interest in quantum cryptography [3–5] in section 3 and simplify our criterion to find
theorem 2. In a subclass of these states we use this theorem to completely solve the question of
symmetric extendibility in a two-parameter family of two-qudit states, which form a superset
of the isotropic states. Finally, we conclude the paper with section 4.

1.1. Definition and basic facts

We consider three d-dimensional Hilbert spaces HA = HB = HE = C
d , d ∈ N \ {1}

(this naming arises from Alice, Bob and Eve in quantum cryptography), each of which has
a basis labeled by the elements of the ring of residue classes Z/dZ. This ring we shall
identify with the numbers in Zd := {0, . . . , d − 1}, where all the operations (in particular,
addition ‘⊕’ and subtraction ‘�’) are taken modulo d. In the following, we take a basis
to be {|0〉, |1〉, . . . , |d − 1〉} ⊆ C

d and all sums run over Zd . We start with the definition
of symmetric extendibility; in a more general context, it may be called (1, 2)-symmetric
extendibility [6], but this is not within the scope of this work.

Definition 1 (Symmetric extendibility). A state ρAB on HA ⊗ HB is called symmetrically
extendible, if there exists a state ρABE on HA ⊗ HB ⊗ HE with HE = HB , such that
ρABE = ρAEB and TrE ρABE = ρAB hold.

Obviously all separable states have a symmetric extension, whilst no pure entangled state
does. The general solution to the problem, whether a state is symmetrically extendible or not
is unsolved, however, a criterion for Bell-diagonal two-qubit states is known [1] and, more
generally, criteria for general two-qubit states have been investigated [2].

The use of symmetrically extendible states in quantum cryptography arises from the
following observation: assume that Alice and Bob share a symmetrically extendible state
ρAB . In the worst-case scenario in quantum cryptography it may happen that the attacker
Eve possesses the extension, so that the overall state of the three parties is ρABE . If Alice
and Bob want to perform entanglement purification with one-way communication from Alice
to Bob only, the will certainly fail, since Eve will listen to Alice’s communication and do
precisely the same as Bob. In other words, Bob and Eve are indistinguishable to Alice.
This problem will not occur, if Bob may send information to Alice, because Eve cannot
impersonate Bob. The purpose of two-way entanglement purification therefore is to convert
a symmetrically extendible state into one which is not, in order to be able to use one-way
purification protocols, which are normally more efficient.

To describe the problem of symmetric extendibility more explicitly, consider two general
density matrices on the Hilbert spaces HA ⊗ HB and HA ⊗ HB ⊗ HE , respectively:

ρAB =
∑

ijpq
aij,pq |ij 〉〈pq|, (1)

ρABE =
∑

ijkpqr
aijk,pqr |ijk〉〈pqr|. (2)

In order for ρABE to be a symmetric extension of ρAB three conditions must hold:

• symmetry (between B and E): aijk,pqr = aikj,prq for all i, j, k, p, q, r ∈ Zd ;
• trace condition (or extension property):

∑
k∈Zd

aijk,pqk = aij,pq for all i, j, p, q ∈ Zd ;
• positivity (including hermiticity): ρABE � 0.

The third property guarantees that ρABE is a quantum state, and the interplay between all three
conditions causes the main problem in determining whether a symmetric extension exists or
not.
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1.2. The Hurwitz–Sylvester criterion

For our purposes the most useful condition for checking, whether a matrix is positive (more
precisely, positive semidefinite), is the Hurwitz–Sylvester criterion, which we will briefly
explain in the following: let A ∈ C

d×d be an arbitrary matrix represented with respect to some
fixed basis set, e.g. B = {|0〉, |1〉, . . . , |d − 1〉}. Choosing any non-empty subset S ⊆ B with
cardinality r = |S|, we can construct the associated r × r matrix by skipping all rows and
columns of A, whose basis vectors do not appear in S; the determinants of such subsets are
called principal minors of order r, and there are altogether 2d − 1 principal minors of A. We
now state the criterion; cf e.g. [7, p 282].

Lemma 1 (Hurwitz–Sylvester criterion for positivity). A matrix A ∈ C
d×d is positive, if and

only if all its principal minors are non-negative.

This criterion is not to be confused with the better known Hurwitz–Sylvester criterion for
positive-definite matrices, which states that a matrix is positive definite, if and only if all
leading principal minors, that is the determinants of the d upper left submatrices, are (strictly)
positive. Note in particular that lemma 1 implies that block-diagonal matrices are positive, if
and only if all blocks are positive.

2. Symmetric extendibility of U2-invariant states

In this section, we introduce the class of states we are interested in, the U2-invariant states.
These states were shown to be of interest in quantum cryptography [3], which is the main
impetus for our investigation. We will derive a criterion (theorem 1) in order to decide whether
there exists at least one possible symmetric extension.

2.1. Invariant states and commutants

It is yet not feasible to derive a criterion to decide whether an arbitrary two-qudit state possesses
a symmetric extension or not. Thus, in order to progress we have to choose an appropriate
class of these states, which should both be of physical interest and enable us to find a criterion
for symmetric extendibility. A convenient way of describing states is by their commutant.
Consider for example the full unitary group U(Cd ⊗ C

d) on the Hilbert space C
d ⊗ C

d of two
qudits; we may ask which states are invariant with respect to that group. In this particular case,
Schur’s lemma tells us that the only invariant state is d−21Id2 , since U(Cd ⊗ C

d) is irreducible.
More interesting examples are the states invariant with respect to U ⊗ U for all U ∈ U(Cd)

(Werner states) or with respect to U ⊗ U ∗ for all U ∈ U(Cd) (isotropic states).
In the following, we shall focus on a superset of the set of the isotropic states. To this

aim, let us define three groups:

U1 := {
U ∈ U(Cd)|U diagonal in the standard basis

}
,

U2 := {U ⊗ U ∗|U ∈ U1} ,

U3 := {U ⊗ U ∗ ⊗ U ∗|U ∈ U1} .

(3)

We may call U1 the diagonal unitary group; it is a maximally commutative subgroup of U(Cd),
and any matrix U ∈ U1 may be written in the form U = diag(w0, w1, . . . , wd−1) for some
system w = (w0, w1, . . . , wd−1) ∈ C

d of complex numbers which lie on the unit circle of C.
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2.2. The class of U2-invariant states

The class of states we want to consider is the class of U2-invariant states, which we describe
now. Given an arbitrary Uw = ∑d−1

x=0 wx |x〉〈x| ∈ U1 and a two-qudit state in the form of (1),
we calculate(
Uw ⊗ U ∗

w

)
ρAB = ∑

xyijpq wxw
∗
yaij,pq |xy〉 〈xy|ij 〉 〈pq| = ∑

ijpq wiw
∗
j aij,pq |ij 〉〈pq|,

ρAB
(
Uw ⊗ U ∗

w

) = ∑
xyijpq wxw

∗
yaij,pq |ij 〉 〈pq|xy〉 〈xy| = ∑

ijpq wpw∗
qaij,pq |ij 〉〈pq|, (4)

and in order to be U2-invariant, the two expressions have to be equal for all possible choices
of Uw. We thus have to ensure wiw

∗
j aijpq = wpw∗

qaijpq for all i, j, p, q ∈ Zd . If aij,pq is
non-zero, this amounts to wiwq = wpwj , and since Uw is arbitrary, this can be guaranteed
only if either (i, q) = (j, p) or (i, q) = (p, j) holds. Thus, all coefficients except those of
the form aii,pp or aij,ij must vanish, and the matrix is diagonal up to a block of size d for the
basis vectors {|00〉, |11〉, . . . , |d − 1, d − 1〉}.

2.3. The U3-invariant states

If it exists at all, a U2-invariant state will have a U3-invariant symmetric extension. This
is because for any symmetric extension ρABE of ρAB and any U ∈ U3, the state UρABEU †

symmetrically extends ρAB . Averaging over the (unique) normalized Haar measure on U3

will yield the invariant extension ρ ′
ABE = ∫

U∈U3
UρABEU †dU . Algebraically spoken, if there

exists an extension, it can be chosen to lie in the commutant of U3 in the algebra of operators
on (Cd)⊗3.

Since U3 is commutative, it is easy to calculate its commutant, i.e. the U3-invariant states.
This can be done in a similar fashion as we did for U2 in the previous subsection, and we find
that aijk,pqr may be non-zero, only if (i, q, r) and (p, j, k) are related by a permutation. This
leads to a block-matrix structure in the standard basis of (Cd)⊗3, which we can label by the
basis vectors; the blocks are

(i) blocks Bk of size 2d − 1 for basis vectors |pkp〉 and |ppk〉 for p �= k and |kkk〉;
(ii) blocks Cijk of size 2 for vectors |ijk〉 and |ikj 〉, i, j, k being all different;

(iii) blocks Dij of size 1 for the vector |ijj 〉 with i �= j .

To recall our previous statements, given any extension of our state, we find an extension by
setting all elements to zero, which do not lie in any of these blocks. By using the block
structure it gets much easier to check positivity (see the note below lemma 1).

2.4. The trace conditions

Any two-qudit state can be written as ρAB = ∑
ij,pq aij,pq |ij 〉〈pq|; an extension will then

have the form ρABE = ∑
ijk,pqr aijk,pqr |ijk〉〈pqr|, and we have to determine the coefficients

aijk,pqr . In the case k = r they have to obey certain trace conditions, and we want to check
where these coefficients aijk,pqk lie. We consider the two cases of nonzero coefficients of ρAB :

(i) aii,pp: the relevant coefficients aiik,ppk lie in the blocks Bk;
(ii) aij,ij : the relevant coefficients aijk,ijk are the diagonal elements of all blocks.

The remaining coefficients aij,pq are zero due to the U2-invariance, and we set aijk,pqk := 0,
since they lie outside of our block structure. We note that the off-diagonal elements aijk,ikj

and aikj,ijk of Cijk can be set to zero, since they do not appear in the trace and according to
lemma 1 any other choice may only harm positivity of ρABE .
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2.5. Symmetry and the reduction of Bk to B ′
k

Apart from the trace condition we still have to fulfil the symmetry aijk,pqr = aikj,prq . In the
case of the blocks Dij nothing has to be done, and for Cijk we note that it is a multiple of the
2 × 2 unit matrix. Let us therefore focus on the blocks Bk .

Each block Bk is constructed for the basis vectors |ppk〉 and |pkp〉 for k �= p and the
exceptional element |kkk〉. By symmetry aiik,ppk = aiki,pkp and aiik,pkp = aiki,ppk hold;
whilst the first-mentioned elements appear in the trace condition, the latter do not. We now
choose aiik,pkp := aiik,ppk and show that this is not a restriction. Let B ′

k be the d ×d submatrix
of Bk constructed for the basis vectors |ppk〉 (where k = p is possible).

Lemma 2 (Equivalence of positivity of Bk and B ′
k). Either Bk and B ′

k are both positive
semidefinite or none of them is.

Proof. If Bk is positive definite, then so is its submatrix B ′
k . Assuming that B ′

k is positive
semidefinite, we choose an arbitrary principal minor of Bk . If it is constructed by using a pair
|ppk〉 and |pkp〉, it is zero due to our choice of the elements aiik,pkp; if not, we can replace all
|pkp〉 by |ppk〉 to yield a submatrix of B ′

k . Positivity is thus ensured by lemma 1. �

Since the elements aiik,pkp do not appear in B ′
k , any other choice may only harm positivity.

Furthermore, by this reduction, we got rid of the symmetry constraint, which is now implicitly
hidden in the matrices.

2.6. Building up the matrices B ′
k

We now want to explicitly construct positive matrices B ′
k . For shortness, let us denote

λijk := aijk,ijk and λij := aij,ij for the diagonal elements; the symmetry and the second trace
condition then read λijk = λikj and

∑
k λijk = λij . For fixed i ∈ Zd , we can write a scheme,

which is symmetric and consists of non-negative entries:

k : column index
j : row index

0 1 . . . i . . . d − 1 row sum

0 λi00 λi01 . . . λi0i . . . λi,0,d−1 λi0

1 λi10 λi11 . . . λi1i . . . λi,1,d−1 λi1
...

...
...

. . .
...

...
...

i λii0 λii1 . . . λiii . . . λi,i,d−1 λii

...
...

...
...

...
. . .

...
...

d − 1 λi,d−1,0 λi,d−1,1 . . . λi,d−1,i . . . λi,d−1,d−1 λi,d−1

column sum λi0 λi1 . . . λii . . . λi,d−1

.

The elements on the “cross” defined by i = j or i = k lie in the blocks Bk , the remaining
diagonal entries in blocks Dij and all other in blocks Cijk . The second trace condition fixes
the sum of each row and each column.

Given such a scheme, positivity has to be ensured within the blocks B ′
k only. If there

exists a scheme which fulfils all criteria and produces positive B ′
k , there exists a scheme,

where Cijk vanish: if some λijk =: x � 0, by symmetry λikj = x holds. Substituting
λ′

ijj := λijj + x, λ′
ikk := λikk + x and λ′

ijk := λ′
ikj := 0, the trace conditions are still fulfilled,

Cijk = 0 and the diagonal elements of B ′
k remain unaffected.

We can thus arbitrarily choose the diagonal entries of the matrices B ′
k between zero and

their maximum value, since Dij , i.e. the entries λijj := λij − λiij will absorb the remaining

5
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value to fulfil the trace condition. The only thing we have to take care of is λiik � λik for all
i, k ∈ Zd , since the first trace condition ensures

∑
p∈Zd

λppk = λpp for all k ∈ Zd .

2.7. Reformulation of the trace condition and the main theorem

The matrix B ′
k is constructed with respect to the basis vectors |ppk〉 for p ∈ Zd , where we now

consider this particular ordering. Summing up all matrices B ′
k yields∑d−1

k=0
B ′

k =
(∑

k
aiik,ppk

)d−1

i,p=0
= (aii,pp)d−1

i,p=0 =: B̃ (5)

according to the first trace condition, and as a submatrix of ρAB , it is always positive. Skipping
the primes in B ′

k , we have altogether shown the following theorem.

Theorem 1 (Symmetric extendibility of U2-invariant states). A U2-invariant state ρAB =∑
ijpq aij,pq |ij 〉〈pq| is symmetrically extendible, if and only if the matrix B̃ = (aii,pp)d−1

i,p=0 ∈
C

d×d can be decomposed into the sum of d positive matrices Bk = (aiik,ppk)
d−1
i,p=0 ∈ C

d×d

for k ∈ Zd , such that their diagonal elements obey the inequalities aiik,iik � aik,ik for all
i, k ∈ Zd .

In general, this condition is still difficult to check, however, it is sufficiently appropriate for
calculating bounds for quantum-cryptographic protocols [8], and we will use it as a starting
point for the following section.

Since the sum of positive matrices is positive, we can always enlarge the diagonal elements
of a positive matrix without changing its positivity. Ignoring for the moment the trace
conditions, we could set the diagonal elements of all Bk to their maximum values. Considering
only the non-negativity of all principal minors constructed of 2 × 2 submatrices, we find the
following corollary.

Corollary 1 (Necessary condition for symmetric extendibility). A U2-invariant symmetrically
extendible state fulfils |aii,pp| �

∑d−1
k=0

√
aik,ikapk,pk for all i, p ∈ Zd .

3. Bell-diagonal states

An important subset of all two-qudit states is the class of (generalized) Bell-diagonal states.
We define the Bell basis of the Hilbert space H = C

d ⊗ C
d by

|�lm〉 := d−1/2
∑d−1

k=0
zlk|k〉|k � m〉, l, m ∈ Zd , (6)

where z := exp
(

2π i
d

)
is the principal value of the dth root of unity. The Bell-diagonal states

are the convex combinations of the associated density matrices and can be written in the form

ρAB =
∑d−1

l,m=0
Alm|�lm〉〈�lm|, (7)

where Alm � 0 and
∑

lm Alm = 1. The coefficient system (Alm)d−1
l,m=0 thus defines a joint

probability distribution, and we write A∗m := ∑d−1
l=0 Alm for one of its marginals. To construct

the elements aij,pq , we rewrite (7) as

ρ = d−1
∑

lmkk′ Almzl(k−k′)|k, k � m〉〈k′, k′ � m| (8)

and thus find aij,pq = d−1δi�j,p�q

∑
l Al,i�j z

l(i−p); since δi�j,p�q = δi�p,j�q , this gives rise
to a block structure of the density matrix, where for every m ∈ Zd the basis elements of the

6
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blocks are given by {|ip〉|i � p = m}. Comparing this with the block structure of general
U2-invariant states, we find the following lemma.

Lemma 3 (Characterization of U2-invariant Bell-diagonal states). A Bell-diagonal state with
coefficient system (Alm)d−1

l,m=0 is U2-invariant, if and only if for all m �= 0 and l ∈ Zd there
holds Alm = d−1A∗m.

The two trace conditions of section 2.4 now read

∑
k

aijk,pqk
!= aij,pq =

{
d−1Ãip := d−1 ∑

l Al0z
l(i−p), if i = j and p = q

d−1A∗,i�j = λij , if i = p and j = q.
(9)

Note that there is no ambiguity in the case i = j = p = q, and the remaining cases are all zero
and irrelevant. As in subsection 2.4, the relevant components for the first trace condition lie
in the blocks Bk , whilst the relevant components for the second trace condition are precisely
the diagonal elements of all blocks.

3.1. Symmetric extensions of U2-invariant Bell-diagonal states

The Bell-diagonal states have particular properties, which we can use in our discussion.
Namely, the matrix B̃ = d−1(Ãip)d−1

i,p=0 of theorem 1 is circulant and the conditions on the
diagonal elements of Bk also have the circulant structure λiik � d−1A∗,i�k . This will yield
some simplifications.

The symmetric group Sd can be seen to consist of the permutations on Zd . Using a
permutation π ∈ Sd , one can shift rows and columns of a matrix A = (aij )

d−1
i,j=0 ∈ C

d×d to get

A(π) = (aπ(i),π(j))
d−1
i,j=0. (Technically spoken, this is a representation of Sd on C

d×d .) For the
cyclic permutation defined by πl(i) := i � l, we shall write A(l) := A(πl). With this definition
we can simplify theorem 1 in the case of Bell-diagonal states.

Theorem 2 (Symmetric extendibility of U2-invariant Bell-diagonal states). For a U2-invariant
Bell-diagonal symmetrically extendible state, the set of matrices in theorem 1 can be chosen
to consist of matrices B0, B1, . . . , Bd−1, such that Bl = B

(l)
0 holds for all l ∈ Zd .

Proof. First note that in the Bell-diagonal case, the matrix B̃ of theorem 1 is circulant in the
Bell-diagonal case, i.e. B̃ = B̃(l) for all l ∈ Zd . This implies

B̃ = B̃(l) = B
(l)
0 + B

(l)
1 + B

(l)
2 + · · · + B

(l)
d−1, (10)

and we can define B ′
k := d−1 ∑d−1

l=0 B
(l)
k�l for all k ∈ Zd . Since the matrix B

(l)
k fulfils the

same diagonal constraints as Bk⊕l , the matrix B ′
k fulfils the same conditions as Bk , and∑d−1

k=0 B ′
k = B̃. �

This theorem tells us that we effectively have to look for one matrix B0 only instead of
d matrices. Corollary 1 now states that symmetrically extendible U2-invariant Bell-diagonal
states fulfil |Ãip| �

∑d−1
k=0

√
A∗kA∗,k⊕i�p for all i, p ∈ Zd .

3.2. Generalized-isotropic states

We now want to concentrate on an even more restricted class of states, where we can solve
the problem completely, the generalized isotropic states [3]. These are Bell-diagonal states
where Al0 = Al′0, A0m = A0m′ and Alm = Al′m′ hold for all l, m �= 0. Since we enforce

7
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U2-invariance and normalization, we are left with two parameters, a and b only, for which
there hold a, b � 0 and x := a + (d − 1)b � 1; we have

Alm =

⎧⎪⎨
⎪⎩

a, if l = m = 0,
b, if l �= m = 0,
1−a−(d−1)b

d(d−1)
else.

(11)

In particular, A∗m = δm0 · x + (1 − δm0) · 1−x
d−1 and

∑
l Al0z

l(i−p) = δip · x + (1 − δip)(a − b).
Considering the matrix B ′

0 of theorem 2, the constraints on the diagonal elements read
a000,000 � d−1 · x and aii0,ii0 � d−1 · 1−x

d−1 for i �= 0. We shall now consider the matrix
B ′′

0 , where we average all rows and columns except the first one:

B ′′
0 := 1

(d − 1)!

∑
π∈{ϕ∈Sd |ϕ(0)=0} B

′(π)
0 . (12)

A positive sum of positive matrices being positive, the matrix B ′′
0 is positive and can replace

B ′
0 in theorem 2, because the sums of the off-diagonal components are the same as in B ′

0, as
is shown in the following. The use of this mixing over several permutations enforces some
symmetries; we write B ′

0 = (bij )
d−1
i,j=0 for bij := aii0,jj0:

(i) the entry b00 remains unaffected and invariant;
(ii) the entries b0j , j �= 0, are mapped to (d − 1)−1(b01 + b02 + · · · + b0,d−1);

(iii) the entries bi0, i �= 0, are mapped to (d − 1)−1(b10 + b20 + · · · + bd−1,0);
(iv) the entries bij , i = j �= 0, are mapped to (d − 1)−1(b11 + b22 + · · · + bd−1,d−1);
(v) the entries bij , i �= j, i, j �= 0, are mapped to (d − 1)−1(d − 2)−1 ∑

i �=j,i,j �=0 bij .

We can thus focus on matrices of the form B ′′
0 = d−1Md(α, β, ξ, η), where

Md(α, β, ξ, η) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α ξ ∗ ξ ∗ . . . ξ ∗

ξ β η . . . η

ξ η β
. . .

...

...
...

. . .
. . . η

ξ η . . . η β

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ C
d×d; (13)

the determinant of this matrix is given by

det Md(α, β, ξ, η) = (β − η)d−2{α[β + (d − 2)η] − (d − 1)|ξ |2}. (14)

In order for B ′′
0 to be Hermitian, α, β and η must be real; the parameter ξ can be chosen to

be real, since ξ + ξ ∗ + (d − 2)η
!= a − b is real, and replacing ξ by its real part Re ξ does

not change the sum and does not harm positivity of the matrix, which is a consequence of the
following lemma.

Lemma 4 (Positive semidefinite matrices). The matrix Md(α, β, ξ, η) is positive semidefinite,
if and only if the three quantities α, β and det Md(α, β, ξ, η) are jointly non-negative, the
inequality |ξ | �

√
αβ holds and η ∈ [− β

d−2 ;β
]
.

Proof. Using lemma 1, we have to check whether all principal minors of Md(α, β, ξ, η) are
non-negative. The principal minors of order one are α, β, the others can easily seen to be

det Mr(α, β, ξ, η) for r ∈ {2, . . . , d},
det Ms(β, β, η, η) for s ∈ {2, . . . , d − 1}. (15)

By invoking (14) we find det Ms(β, β, η, η) = (β − η)s−1[β + (s − 1)η
]
, which leads to

η ∈ [− β

d−2 ;β
]
. For det Mr(α, β, ξ, η) we thus focus on the curly bracket of (14) to find

8
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(β − η)−(r−1) det Mr+1(α, β, ξ, η) = (β − η)−(r−2) det Mr(α, β, ξ, η) + (αη − |ξ |2). Since
(αη − |ξ |2) is fixed, we only need to consider the cases r ∈ {2, d}, which are given by
|ξ | �

√
αβ and det Md(α, β, ξ, η) � 0, respectively. �

Let us for now denote by ρ(a, b) the state described by (11), which is the general
form of a U2-invariant Bell-diagonal generalized-isotropic state. To satisfy theorem 2,
α+(d −1)β = a+(d −1)b = x must hold. For x being fixed, we may thus write α = (1−σ)x

and β = σx
d−1 , where the diagonal constraints from theorem 1 read σ ∈ [

0; min
{
1, 1−x

x

}]
. The

following lemma allows us to focus on the extremal values (a − b)min � 0 � (a − b)max for
which the state is symmetrically extendible, given that x is fixed.

Lemma 5 (Mixtures of states). Given two symmetrically extendible states ρ(a1, b1) and
ρ(a2, b2), such that there holds x = a1 + (d − 1)b1 = a2 + (d − 1)b2, any other state ρ(a, b)

with a + (d − 1)b = x and a1 − b1 � a − b � a2 − b2 is symmetrically extendible.

Proof. We find ρ(a, b) = p · ρ(a1, b1) + (1 − p) · ρ(a2, b2) for p := (a−b)−(a2−b2)

(a1−b1)−(a2−b2)
and note

that the set of symmetrically extendible states is convex. �

We will now investigate the possible choices of ξ and η to find the allowed values for
2ξ + (d −2)η = a −b in the case of d � 3 and comment on d = 2 in the following subsection.

3.2.1. Calculation of (a − b)max. To find (a − b)max, it is sufficient to maximize ξ and η

individually. We can therefore set ηmax := β = σx
d−1 , which leads to the maximum range for

ξ . The determinant condition det Md(α, β, ξ, η) � 0 leads to

|ξ | �
√

α[β + (d − 2)ηmax]

d − 1
=

√
(1 − σ)x

[
σx
d−1 + (d − 2) σx

d−1

]
d − 1

= x

√
σ(1 − σ)

d − 1
, (16)

which is precisely the same as |ξ | �
√

αβ. We have thus found ξmax =
x
√

σ(1−σ)

d−1 , which results in (a − b)max = 2ξmax + (d − 2)ηmax = x · f (σ) for

f (σ) := 2 ·
√

σ(1 − σ)

d − 1
+ (d − 2) · σ

d − 1
, (17)

and we still have to maximize over σ ∈ [
0; min

{
1, 1−x

x

}]
. The function f monotonically

increases up to a maximum value of f
(

d−1
d

) = 1. If the choice of σ := d−1
d

is allowed, any
state with positive (a − b) is symmetrically extendible, since a − b � x is always true; this
holds, if d−1

d
� 1−x

x
or x � d

2d−1 . Else we choose the maximally possible value σ := 1−x
x

to
find

a − b � f

(
1 − x

x

)
· x = 2

√
(1 − x)(2x − 1)

d − 1
+

d − 2

d − 1
· (1 − x) (18)

as a criterion for symmetric extendibility, given that a − b � 0.

3.2.2. Calculation of (a − b)min. The calculation of (a − b)min is more involved than the
previous one, because we cannot separately minimize ξ and η. We write η = τx and start
with the conditions on ξ :

|ξ | �
√

α[β + (d − 2)η]

d − 1
= x

√
(1 − σ)

[
σ

d−1 + (d − 2)τ
]

d − 1
. (19)

9
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Since η ∈ [ −β

d−2 ;β
]
, there must hold τ ∈ [ −σ

(d−2)(d−1)
; σ

d−1

]
. We can continue to substitute

μ := (d − 2)(d − 1)τ and ν := μ + σ to find

|ξ | � x

d − 1

√
(1 − σ)(σ + μ) = x

d − 1

√
(1 − σ)ν (20)

for μ ∈ [−σ ; (d − 2)σ ] and ν ∈ [0; (d − 1)σ ]. We can set ξmin := − x
d−1

√
(1 − σ)ν and

minimize the value of

2ξ + (d − 2)η = x

d − 1
· [−2

√
(1 − σ)ν + (ν − σ)]. (21)

The first derivative of the bracket with respect to ν is 1 −
√

ν−1(1 − σ), unless σ = 1 or
ν = 0, and the minimum always lies in [0; (d − 1)σ ]. The minimum attained is −1, so
(a − b)min = − x

d−1 , and since smaller values of (a − b) are impossible by definition, all states
with a < b can be symmetrically extended.

3.3. Discussion of results

Altogether, the last two calculations of (a − b)max and (a − b)min have shown the following.

Theorem 3 (Symmetric extendibility of generalized-isotropic states). For d � 3, a U2-
invariant Bell-diagonal generalized-isotropic state is symmetrically extendible, if and only if
either x � d

2d−1 or inequality (18) or both hold.

We shall finally discuss the qubit case d = 2. The calculations from section 3.2.1 essentially
go through, but those of section 3.2.2 fail due to denominators d − 2. However, by a local
unitary operation we can interchange a and b and find that a state with x ∈ [1/3; 2/3] or

|a − b| � 2
√

(1 − x)(2x − 1) (22)

is symmetrically extendible; rewriting this yields −9a2 − 14ab − 9b2 + 12a + 12b − 4 � 0,
which coincides with the results known before [1].

Another important case for two-qudit states are isotropic states (cf section 2). It can be
shown that the isotropic states are those Bell-diagonal states where the equality Alm = 1−A00

d2−1
holds for all (l,m) �= (0, 0). In this case only a single parameter is left (any one of a, b

or x). We find (a − b)isotropic = dx−1
d−1 > 0 and by solving (18) we find x � d+3

2(d+1)
or

a = x − (d − 1) 1−x
d(d−1)

� d+1
2d

to be necessary and sufficient for symmetric extendibility, if
d � 3; for d = 2, the condition is a ∈ [1/4; 3/4].

4. Conclusions

We have derived a criterion for symmetric extendibility of U2-invariant two-qudit states in terms
of a matrix decomposition (theorem 1). We have simplified this in the case of Bell-diagonal
states (theorem 2), and for the two-parameter family of generalized-isotropic U2-invariant
states, we have completely solved the problem (theorem 3).

In the introduction, we already mentioned that in quantum-cryptographic protocols
symmetrically extendible states cannot be used, if only one-way communication between
the two parties is allowed. Given symmetrically extendible states, it is therefore necessary to
decide whether they can be transformed into non-extendible states by some class of two-way
protocols. If this is not the case, no secure key can be distilled by such protocol. From this
consideration it is possible to derive upper bounds for quantum-cryptographic protocols using
our criteria, and it appears that the already known bounds for two-way quantum cryptography
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(e.g. [3, 4]) cannot be increased by standard means of two-way protocols. This extends some
of the known results [1, 2] for qubit-based protocols; for details of this extension we refer to
[8, 9].
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